A critical ocean layer for El Niño–Southern Oscillation (ENSO) dynamics.
A study published October 31, 2024, in the Journal of Geophysical Research: Oceans has revealed significant acceleration in the upper-ocean circulation of the equatorial Pacific over the past 30 years. This acceleration is primarily driven by intensified atmospheric winds, leading to increased oceanic currents that are both stronger and shallower, with potential impacts on regional and global climate patterns, including the frequency and intensity of El Niño and La Niña events. The study provides a spatial view of these long-term trends from observations, adding at least another decade of data from previous studies.
The research team, led by Franz Philip Tuchen, a postdoctoral scientist at the University of Miami Rosenstiel School’s NOAA Cooperative Institute for Marine and Atmospheric Studies (CIMAS), in collaboration with NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML), synthesized thirty years of long-term ocean and atmosphere observations from satellites, mooring buoys, and ocean surface drifters. By integrating the reanalysis of wind data and satellite altimetry into a high-resolution, gridded time series of near-surface ocean currents, this study presents a new and comprehensive view to date of the changes in the Pacific upper-ocean circulation.
Read more at University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science
Image: West-east near-surface current trend between 1993-2022. Blue colors show increased westward currents; red colors show increased eastward currents. The largest trends are observed in the central tropical Pacific Ocean (black box). Current velocity data from three equatorial moored buoys (yellow diamonds) provide a subsurface view on long-term upper-ocean current velocity trends. (Credit: Graphic figure: Franz Philip Tuchen Satellite image background NOAA NESDIS)
Sci/Tech Climate Top Stories